Quantized Gromov-hausdorff Distance
نویسنده
چکیده
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel’s Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As applications, we show that a quantized metric space with 1-exact underlying matrix order unit space is a limit of matrix algebras with respect to quantized Gromov-Hausdorff distance, and that matrix algebras converge naturally to the sphere for quantized Gromov-Hausdorff distance.
منابع مشابه
C∗-algebraic Quantum Gromov-hausdorff Distance
We introduce a new quantum Gromov-Hausdorff distance between C∗-algebraic compact quantum metric spaces. Because it is able to distinguish algebraic structures, this new distance fixes a weakness of Rieffel’s quantum distance. We show that this new quantum distance has properties analogous to the basic properties of the classical Gromov-Hausdorff distance, and we give criteria for when a parame...
متن کاملSome Properties of Gromov-Hausdorff Distances
The Gromov–Hausdorff distance between metric spaces appears to be a useful tool for modeling some object matching procedures. Since its conception it has been mainly used by pure mathematicians who are interested in the topology generated by this distance, and quantitative consequences of the definition are not very common. As a result, only few lower bounds for the distance are known, and the ...
متن کاملThe Gromov-Hausdorff distance: a brief tutorial on some of its quantitative aspects
We recall the construction of the Gromov-Hausdorff distance. We concentrate on quantitative aspects of the definition and on quantitative properties of the distance .
متن کاملGromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces
We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.
متن کاملar X iv : 1 50 9 . 05 75 1 v 1 [ cs . C G ] 1 8 Se p 20 15 Computing the Gromov - Hausdorff Distance for Metric Trees ∗
The Gromov-Hausdorff distance is a natural way to measure distance between two metric spaces. We give the first proof of hardness and first non-trivial approximation algorithm for computing the Gromov-Hausdorff distance for geodesic metrics in trees. Specifically, we prove it is NP-hard to approximate the Gromov-Hausdorff distance better than a factor of 3. We complement this result by providin...
متن کامل